
Bridging the Chasm
between Executable Metamodeling

and Models of Computation

E3S
Supelec
Systems
Science

Benoit Combemale, Cécile Hardebolle, Christophe Jacquet,
Frédéric Boulanger, Benoit Baudry

E3S
Supelec
Systems
Science

Outline

27-sep-12 3

�  Context: DSLs and their semantics
�  Illustrating DSL example: fUML
�  Our “bridging” approach, illustrated on fUML

!  Overview of the approach
!  Executable metamodeling and Domain Specific Actions (DSAs)
!  Models of Computation (MoCs)
!  Bridge

�  Demo

�  Discussion and conclusion

Context: DSLs
!  Domain Specific Language (DSL) = language with a limited and

dedicated set of concepts, designed for domain experts to
express concerns about a system

!  DSLs are successful
!  [Karna et al.] limited expressiveness + dedicated tools =

 productivity increase when building software-intensive systems
 reduction in the number of errors

!  [Hutchinson et al.] DSLs make the industrial adoption of model-driven
engineering easier

!  The (formal) definition of the semantics of DSLs is necessary
to benefit from tool generation, formal analysis, model
execution, etc. but is a major difficulty [Bryant et al.]

27-sep-12 4

How to define a DSL?

27-sep-12 5

!  [Harel et al.] DSL = abstract syntax
 + concrete syntax
 + semantic domain

!  Our contribution = decomposition
of the mappingAS-SD in two parts
!  Domain-Specific Actions (DSAs):

semantics of domain specific concepts
!  Model of Computation (MoC):

communication, concurrency and
time semantics (≈ scheduling of DSAs)

!  Benefit = reuse of the MoC in different DSLs
 variations of a given DSL by varying the MoC

Abstract
Syntax
(AS)

Concrete
Syntax
(CS)

Semantic
Domain

(SD)

mappingAS-SD mappingAS-CS

DSAs

Abstract
Syntax
(AS)

Concrete
Syntax
(CS)

mappingAS-CS

Semantic
Domain

(SD)
Semantic
Domain

(SD)

MoC

The “bridging” approach

27-sep-12 6

!  The “bridging” approach = decomposition of the mapping
between abstract syntax and semantic domain in two parts

!  Domain-Specific Actions (DSAs):
semantics of domain specific concepts

!  Model of Computation (MoC):
communication, concurrency and
time semantics (≈ scheduling of DSAs)

Weave executable semantics
on metamodel elements

(executable metamodeling)
Kermeta

DSAs

Abstract
Syntax
(AS)

Concrete
Syntax
(CS)

mappingAS-CS

ModHel'X

Kermeta

MoC

Define, reuse and compose the
executable semantics of MoCs

ModHel'X

Semantic
Domain

(SD)
Semantic
Domain

(SD)

DSL example: fUML

7

!  Foundational UML (fUML) =
 semantics for an executable subset of UML

!  fUML = DSL composed of:
!  A subset of the abstract syntax of UML, focused on Activity Diagrams
!  An execution model based on a system of tokens and offers

!  Example fUML model:

27-sep-12

Have a coffee

Talk

Work

WorkSessionActivity
Activity

Activity Node
Activity Edge

Activity Node

Steps of the “bridging” approach

27-sep-12 8

DSAs

Abstract
Syntax
(AS)

Concrete
Syntax
(CS)

mappingAS-CS

ModHel'X

Kermeta

MoC

What is the abstract
syntax of the DSL?

1.  Define the metamodel of the DSL with Ecore
(+ add static semantics with OCL)

The simplified-fUML metamodel

27-sep-12 9

Have a coffee

Talk
Work

WorkSessionActivity

Steps of the “bridging” approach

27-sep-12 10

DSAs

Abstract
Syntax
(AS)

Concrete
Syntax
(CS)

mappingAS-CS

ModHel'X

Kermeta

MoC

What is the semantics
(executable behavior) of

the elementary
concepts of the DSL ?

1.  Define the metamodel of the DSL with Ecore
(+ add static semantics with OCL)

2.  Weave executable semantics on basic concepts
= define Domain Specific Actions (DSAs) with Kermeta

Domain Specific Actions (DSAs)

27-sep-12 11

aspect class JoinNode {	
 operation fire() is do	

	…	
 end	
}	

“A JoinNode waits for
a token to be offered
on all incoming flows

and then offers tokens
on its outgoing flow.”

Have a coffee

Talk
Work

WorkSessionActivity

Domain Specific Actions (DSAs)

27-sep-12 12

aspect class CallBehavioralAction {	
 reference behavior : BehavioralAction	
	
 operation fire() is do	

	self.behavior.call()	
 end	
}	

“A CallBehavioralAction calls
its associated behavior.”

Have a coffee

Talk
Work

WorkSessionActivity

Who orchestrates the execution?

27-sep-12 13

aspect class Activity {	
 operation main() is do	

	…	
 end	
}	

“Executing an Activity means
coordinating the
execution of its

subordinate actions
using the control

and data flow.”

Have a coffee

Talk
Work

WorkSessionActivity

“Call fire on the
elements of the model

in the right order,
transfer the tokens…”

DSAs

Abstract
Syntax
(AS)

Concrete
Syntax
(CS)

mappingAS-CS

Kermeta

ModHel'X

MoC

Steps of the “bridging” approach

27-sep-12 14

How to schedule the calls
to the executable
behavior of the

elementary concepts
of the DSL ?

1.  Define the metamodel of the DSL with Ecore
(+ add static semantics with OCL)

2.  Weave executable semantics on basic concepts
= define Domain Specific Actions (DSAs) with Kermeta

3.  Choose a Model of Computation (MoC) with ModHel'X

!  A (graphical) model can often be abstracted as a block-diagram

!  Executing a block-diagram = executing its blocks…
…But in which order?

!  The communication model (how do these blocks communicate?)
!  The concurrency model (do these blocks execute in parallel?)
!  The time model (is there a notion of date or duration somewhere in this model?)

Notion of Model of Computation

27-sep-12 15

 Rules given by the
Model of Computation (MoC)

Have a coffee

Talk

Work

It depends on:

A MoC for fUML

27-sep-12 16

!  Communication, concurrency, time?
!  ActivityNodes exchange tokens (control and objects)
!  ExecutableNodes may run concurrently
!  The execution of ExecutableNodes may take time

DE

Have a coffee

Talk

Work

 Discrete Events (DE)

Description of a MoC

27-sep-12 17

!  MoC = abstract semantics + MoC specific semantics

API for a generic execution engine
and for heterogeneous model

composition Schedule a block to fire
according to the topological
order in the graph of blocks

and to a list of events
to dispatch

Propagate events
along edges While there are

events to process

Fire the scheduled block

Schedule

Update

Propagate

Further?
yes

The DE specific semantics:

Semantic variation points of fUML

27-sep-12 18

!  Communication, concurrency, time?
!  ActivityNodes exchange tokens (control and objects)
!  ExecutableNodes may run concurrently
!  The execution of ExecutableNodes may take time

DE

Have a coffee

Talk

Work

 Discrete Events (DE)

 Sequential Discrete Events (sDE)

DE/sDE

Unspecified
in the fUML spec.

ModHel'X
execution engine

Behavior of blocks?

27-sep-12 19

!  Communication, concurrency, time?
!  ActivityNodes exchange tokens (control and objects)
!  ExecutableNodes may run concurrently
!  The execution of ExecutableNodes may take time

Have a coffee

Talk

Work

Domain Specific Actions
(DSAs)

19

 Discrete Events (DE)

 Sequential Discrete Events (sDE)

DE/sDE

Steps of the “bridging” approach

27-sep-12 20

DSAs

Abstract
Syntax
(AS)

Concrete
Syntax
(CS)

mappingAS-CS

Kermeta

ModHel'X

MoC

How does the MoC
interact with the
Domain Specific

Actions?

1.  Define the metamodel of the DSL with Ecore
(+ add static semantics with OCL)

2.  Weave executable semantics on basic concepts
= define Domain Specific Actions (DSAs) with Kermeta

3.  Choose a Model of Computation (MoC) with ModHel'X
4.  Bridge MoC and DSAs

The bridge: structure

27-sep-12 21

ModHel'X model

DE/sDE

Wrapper Wrapper

Wrapper

Wrapper

Wrapper Wrapper Wrapper

Model
transformation

Wrapper = ModHel'X block
with a reference to

a fUML element

Have a coffee

Talk

Work

WorkSessionActivity

fUML model
(conforms to the
fUML metamodel)

DE/sDE

The bridge at runtime

27-sep-12 22

Wrapper Wrapper

Wrapper

Wrapper

Wrapper Wrapper Wrapper

Have a coffee

Talk

Work

WorkSessionActivity

fire
fire

fire

fire
fire fire fire DSAs, woven

on (meta)model
elements

with Kermeta

Execution orchestrated
by the MoC
in ModHel'X

DE/sDE

ModHel'X execution engine

update

fire

Steps of the “bridging” approach

27-sep-12 23

DSAs

Abstract
Syntax
(AS)

Concrete
Syntax
(CS)

mappingAS-CS

Kermeta

ModHel'X

MoC

1.  Define the metamodel of the DSL with Ecore
(+ add static semantics with OCL)

2.  Weave executable semantics on basic concepts
= define Domain Specific Actions (DSAs) with Kermeta

3.  Choose a Model of Computation (MoC) with ModHel'X
4.  Bridge MoC and DSAs

Demo: running the WorkSessionActivity

27-sep-12 24

Have a coffee

Talk

Work

Have a coffee

Talk

Work

Discrete
Events
(DE)

Sequential
Discrete
Events
(sDE)

Have a coffee

Talk

Work

WorkSessionActivity

Discussion and future work

27-sep-12 25

!  Is this approach independent from Kermeta and ModHel'X?
!  Kermeta and ModHel'X = tools used for the proof-of-concept

implementation, other tools could have been used (e.g. Ptolemy II)

!  Are the MoC and the DSAs really independent from each other?
!  Well defined interface between MoC and DSAs � ability to reuse

the MoC and to obtain semantic variations of a DSL more easily
!  Further experiment is needed on different case studies to define

best practices and bridging patterns for MoCs and DSAs

!  What are the major perspectives of this work?
!  Take advantage of the heterogeneous composition capabilities

of ModHel'X in order to build heterogeneous models
using several DSLs

Conclusion

27-sep-12 26

!  The “bridging” approach = decomposition of the mapping
between abstract syntax and semantic domain in two parts

!  Domain-Specific Actions (DSAs):
semantics of domain specific concepts

!  Model of Computation (MoC):
communication, concurrency and
time semantics (≈ scheduling of DSAs)

!  Benefit = reuse of the MoC in different DSLs
 variations of a given DSL by varying the MoC

!  A proof-of-concept implementation has been made
!  State-of-the-art tools: Kermeta + ModHel'X
!  DSL case study: fUML

DSAs

Abstract
Syntax
(AS)

Concrete
Syntax
(CS)

mappingAS-CS

ModHel'X

Kermeta

MoC

Thank you!

E3S
Supelec
Systems
Science

Bibliography

27-sep-12 28

!  [Karna et al.] Karna, J., Tolvanen, J.P., Kelly, S.: Evaluating the use of Domain-Specific Modeling in
Practice. In: 9th OOPSLA workshop on Domain-Specific Modeling. (2009)

!  [Hutchinson et al.] Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical
assessment of MDE in industry. In: ICSE), ACM (2011) 471–480

!  [Bryant et al.] Bryant, B.R., Gray, J., Mernik, M., Clarke, P.J., France, R.B., Karsai, G.: Challenges
and directions in formalizing the semantics of modeling languages. Comput. Sci. Inf. Syst. 8(2)
(2011) 225–253

!  [Harel et al.] Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of "Semantics"?
Computer 37(10) (2004) 64–72

!  [OMG] Object Management Group, Inc.: Semantics of a Foundational Subset for Executable
UML Models (fUML), v1.0. (2011)

!  [Kermeta] Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving Executability into Object-Oriented
Meta-Languages. In: MoDELS. Volume 3713 of LNCS., Springer (2005) 264–278

!  [ModHel'X] Boulanger, F., Hardebolle, C.: Simulation of Multi-Formalism Models with
ModHel’X. In: Proceedings of ICST’08, IEEE Comp. Soc. (2008) 318–327

!  [PtolemyII] Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,
Xiong, Y.: Taming heterogeneity – the Ptolemy approach. Proc. of the IEEE 91(1) (2003)
127–144

