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� Context

�Heterogeneous systems: software/hardware, digital/analog, IPs…

�Multiple modeling formalisms: level of refinement, aspect, domain…

� Objective: having a global model of the designed system

�Design, test, verification, validation, …

� Main issues

all along the design cycle

3

Multi-formalism modeling =
allow the use of several modeling languages in a model

1. Describe the semantics of a modeling language precisely (executable)

2. Define the semantics of a combination of modeling languages
in a model

Global reasoning is impossible!
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Set of rules that define the behavior of the model
by combining the behaviors of its components

= “way of interpreting the model”
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z
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Existing approaches & motivations

� Ad-hoc meta-model + execution operations (imperative semantics)

� Fixed component-oriented abstract syntax
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How to “glue” heterogeneous parts together in a model?
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2. Combining modeling languages in a model

Existing approaches & motivations

� Transformation toward a union meta-model

� Transformation toward one of the modeling languages

�Hierarchical layers using different Models of Computation (MoCs)

Issue: predefined & implicit glue between layers

[ATOM3]

[PtolemyII]

Language A

Language B

Language C

ModHel’X = hierarchical layers + MoCs
+ explicit specification of glues
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Modification of the models
in order to obtain an adapted glue 



General architecture of ModHel’X

Structure
of the model

Semantics of
each stage

Generic
execution 
algorithm

+

Semantic “glues”
between MoCs

Language for
specifying semantics

Generic
component-oriented

& hierarchical
abstract syntax

(MOF meta-model)

Generic
model of execution

Executable specifications
of each MoC

Execution
engine
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Generic block-oriented abstract syntax

Block

Relation

TokenPin

Block
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� A few basic concepts: blocks, pins and relations
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� Structure of a model
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� Associated semantics: the MoC
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=
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Model of Computation (MoC)

Structure (CompositeBlock)

Model

Block

Relation

Block
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=
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Model of Computation (MoC)

Structure (CompositeBlock)

Model

Block

Relation

Block
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� A given structure, 2 different semantics with 2 different MoCs !

� Specialization of the abstract syntax allowed to

� Represent particular concepts used in certain MoCs

� Constrain the structure of models for particular MoCs

TokenPin

MoC
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Hierarchy & glue
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snapshot

IN

OUT

model
evolution

state i state i+1

snapshot

IN

OUT

model
evolution

state i state i+1

�When?

� Regularly

� When the time changes

� When the environment changes

� When the model changes (internally)

Depending on the MoCs involved!
(use of constraints)



Model execution (observation)

� Snapshot = combination of block updates (observations)
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Model execution (observation)

� Snapshot = combination of block updates (observations)

Structure (CompositeBlock)

Model

MoC
(external)

Relation

BlockBlock

IN
OUT ?
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� In which order to update the blocks? (control and concurrency)

� Topological order (e.g. DE)

� Transitions (e.g. FSM), …

�How to propagate the results of the updates? (communication) 

� Timed events (e.g. DE)

� Signal flows (e.g. SDF), …

Rules expressed by the MoC
(scheduling and propagation operations)
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Model execution (observation)

Structure (CompositeBlock)

Model

Relation

Block

MoC
(external)

Structure (CompositeBlock)

Model (internal)

MoC
(internal)

InterfaceBlock

Interface
Block

Glue (     )

� Heterogeneity = hierarchy

�Delegation
of the update

� Adaptation
� Data

� Control

� Time
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� Semantic adaptation: 
time “gluing”?

CoffMachStructure
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� in: remove timestamps
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The coffee machine example
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http://wwwdi.supelec.fr/logiciels/modhelx/

Proof of concept demo
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Discussion

� Use for tests:
Simulation & real-time execution of heterogeneous models

� Rapid prototyping

� Execution of test scenarios

� Generation of traces for analysis, …

� Supported MoCs

� Continuous behaviors: numerical solving (approximation)

� Cyclic dependencies: fixed point semantics (monotonicity…)

� Non-determinism: “controlled” non-determinism (pseudo-random functions)

� How to add support for an additional language in ModHel’X?

1. An expert of the modeling language describes:

� The MoC corresponding to the language (structure + semantics)

� Transformations from the original meta-model of the language
to the ModHel’X meta-model

2. Experts define usual interaction patterns (“glues”) for pairs of MoCs

23
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Conclusion

� ModHel’X = an approach to multi-formalism modeling with

� A generic meta-model for representing heterogeneous models

� A specific structure for the explicit and flexible specification
of the interactions between MoCs

� A generic algorithm for executing heterogeneous models

� A fixed frame for expressing MoCs

� Work in progress

� Prototype based on the Eclipse Modeling Framework (EMF)

� Several implemented MoCs

� Working on the Synchronous DataFlow and UML StateCharts MoCs

� Concrete syntax of our language (OMG ImperativeOCL – QVT)

� Verbosity

� Formal semantics

� Perspectives

�Model based expression of glues

� Combination of formal properties
24
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