
11 April 2008

Cécile HARDEBOLLE
Supélec – Computer Science Department

� cecile.hardebolle@supelec.fr

Simulation of multi-formalism models
with ModHel’X

Cécile Hardebolle, Frédéric Boulanger

ICST 2008

1. Context, existing approaches & motivations

2. ModHel’X: underlying concepts

3. The coffee machine example

4. Discussion & conclusion

2

Agenda

11/04/2008

Introduction

� Context

�Heterogeneous systems: software/hardware, digital/analog, IPs…

�Multiple modeling formalisms: level of refinement, aspect, domain…

3

Introduction

� Context

�Heterogeneous systems: software/hardware, digital/analog, IPs…

�Multiple modeling formalisms: level of refinement, aspect, domain…

3

Global reasoning is impossible!

Introduction

� Context

�Heterogeneous systems: software/hardware, digital/analog, IPs…

�Multiple modeling formalisms: level of refinement, aspect, domain…

� Objective: having a global model of the designed system

�Design, test, verification, validation, …

all along the design cycle

3

Multi-formalism modeling =
allow the use of several modeling languages in a model

Global reasoning is impossible!

Introduction

� Context

�Heterogeneous systems: software/hardware, digital/analog, IPs…

�Multiple modeling formalisms: level of refinement, aspect, domain…

� Objective: having a global model of the designed system

�Design, test, verification, validation, …

� Main issues

all along the design cycle

3

Multi-formalism modeling =
allow the use of several modeling languages in a model

1. Describe the semantics of a modeling language precisely (executable)

2. Define the semantics of a combination of modeling languages
in a model

Global reasoning is impossible!

1. Defining the semantics of modeling languages

Existing approaches & motivations

� Ad-hoc meta-model + execution operations (imperative semantics)[Kermeta]

4

1. Defining the semantics of modeling languages

Existing approaches & motivations

� Ad-hoc meta-model + execution operations (imperative semantics)

� Fixed component-oriented abstract syntax
+ Model of Computation (MoC)

[Kermeta]

[PtolemyII]

4

1. Defining the semantics of modeling languages

Existing approaches & motivations

� Ad-hoc meta-model + execution operations (imperative semantics)

� Fixed component-oriented abstract syntax
+ Model of Computation (MoC)

[Kermeta]

[PtolemyII]

4

Set of rules that define the behavior of the model
by combining the behaviors of its components

= “way of interpreting the model”
x y

z

MoC

1. Defining the semantics of modeling languages

Existing approaches & motivations

� Ad-hoc meta-model + execution operations (imperative semantics)

� Fixed component-oriented abstract syntax
+ Model of Computation (MoC)

[Kermeta]

[PtolemyII]

5

How to “glue” heterogeneous parts together in a model?

2. Combining modeling languages in a model

Existing approaches & motivations

� Transformation toward a union meta-model

6

2. Combining modeling languages in a model

Existing approaches & motivations

� Transformation toward a union meta-model

� Transformation toward one of the modeling languages[ATOM3]

Language A

Language B

Language C

6

2. Combining modeling languages in a model

Existing approaches & motivations

� Transformation toward a union meta-model

� Transformation toward one of the modeling languages

�Hierarchical layers using different Models of Computation (MoCs)

[ATOM3]

[PtolemyII]

Language A

Language B

Language C

6

2. Combining modeling languages in a model

Existing approaches & motivations

� Transformation toward a union meta-model

� Transformation toward one of the modeling languages

�Hierarchical layers using different Models of Computation (MoCs)

Issue: predefined & implicit glue between layers

[ATOM3]

[PtolemyII]

Language A

Language B

Language C

Modification of the models
in order to obtain an adapted glue

6

2. Combining modeling languages in a model

Existing approaches & motivations

� Transformation toward a union meta-model

� Transformation toward one of the modeling languages

�Hierarchical layers using different Models of Computation (MoCs)

Issue: predefined & implicit glue between layers

[ATOM3]

[PtolemyII]

Language A

Language B

Language C

ModHel’X = hierarchical layers + MoCs
+ explicit specification of glues

6

Modification of the models
in order to obtain an adapted glue

General architecture of ModHel’X

Structure
of the model

Semantics of
each stage

Generic
execution
algorithm

+

Semantic “glues”
between MoCs

Language for
specifying semantics

Generic
component-oriented

& hierarchical
abstract syntax

(MOF meta-model)

Generic
model of execution

Executable specifications
of each MoC

Execution
engine

7

1. Context, existing approaches & motivations

2. ModHel’X: underlying concepts

3. The coffee machine example

4. Discussion & conclusion

8

Agenda

11/04/2008

1. Context, existing approaches & motivations

2. ModHel’X: underlying concepts
� Abstract syntax, MoC, hierarchy & glue

� Model execution

3. The coffee machine example

4. Discussion & conclusion

8

Agenda

11/04/2008

Generic block-oriented abstract syntax

Block

Relation

TokenPin

Block

9

� A few basic concepts: blocks, pins and relations

Structure (CompositeBlock)

Model

Generic block-oriented abstract syntax

Block

Relation

TokenPin

Block

10

� Structure of a model

Structure (CompositeBlock)

Model

Model of Computation (MoC)

Block

Relation

TokenPin

Block

MoC

11

� Associated semantics: the MoC

Model of Computation (MoC)

Structure (CompositeBlock)

Model

Block

Relation

Block

FSM

coffee? served!

Idle Ready

coin?

coffee? served!

Idle Ready

coin?

=

12

� A given structure, 2 different semantics with 2 different MoCs !

TokenPin

Model of Computation (MoC)

Structure (CompositeBlock)

Model

Block

Relation

Block

DE

=

(TheMathworks SimEvents)

12

� A given structure, 2 different semantics with 2 different MoCs !

TokenPin

Model of Computation (MoC)

Structure (CompositeBlock)

Model

Block

Relation

Block

12

� A given structure, 2 different semantics with 2 different MoCs !

� Specialization of the abstract syntax allowed to

� Represent particular concepts used in certain MoCs

� Constrain the structure of models for particular MoCs

TokenPin

MoC

Hierarchy & glue

Structure (CompositeBlock)

Model

Interface
Block

Relation

Block

MoC

13

� Where is heterogeneity?

Hierarchy & glue

Structure (CompositeBlock)

Model

Relation

Block

MoC
(external)

Structure (CompositeBlock)

Model (internal)

MoC
(internal)

InterfaceBlock

Interface
Block

13

� Where is heterogeneity?

Hierarchy & glue

Structure (CompositeBlock)

Model

Relation

Block

MoC
(external)

Structure (CompositeBlock)

Model (internal)

MoC
(internal)

InterfaceBlock

Interface
Block

= Glue

13

� Where is heterogeneity?

1. Context, existing approaches & motivations

2. ModHel’X: underlying concepts
� Abstract syntax, MoC, hierarchy & glue

� Model execution

3. The coffee machine example

4. Discussion & conclusion

14

Agenda

11/04/2008

Model execution (observation)

� Model execution = sequence of snapshots

Structure (CompositeBlock)

Model

MoC
(external)

IN
OUT ?

snapshot

IN

OUT

model
evolution

state i state i+1

snapshot

IN

OUT

model
evolution

state i state i+1

15

Model execution (observation)

� Model execution = sequence of snapshots

Structure (CompositeBlock)

Model

MoC
(external)

IN
OUT ?

15

snapshot

IN

OUT

model
evolution

state i state i+1

snapshot

IN

OUT

model
evolution

state i state i+1

�When?

� Regularly

� When the time changes

� When the environment changes

� When the model changes (internally)

Depending on the MoCs involved!
(use of constraints)

Model execution (observation)

� Snapshot = combination of block updates (observations)

Structure (CompositeBlock)

Model

MoC
(external)

BlockBlock

IN
OUT ?

16

Model execution (observation)

� Snapshot = combination of block updates (observations)

Structure (CompositeBlock)

Model

MoC
(external)

Relation

BlockBlock

IN
OUT ?

16

� In which order to update the blocks? (control and concurrency)

� Topological order (e.g. DE)

� Transitions (e.g. FSM), …

�How to propagate the results of the updates? (communication)

� Timed events (e.g. DE)

� Signal flows (e.g. SDF), …

Rules expressed by the MoC
(scheduling and propagation operations)

Model execution (observation)

Structure (CompositeBlock)

Model

Relation

Block

MoC
(external)

Interface
Block

� Heterogeneity = hierarchy

17

IN
OUT ?

Model execution (observation)

Structure (CompositeBlock)

Model

Relation

Block

MoC
(external)

Structure (CompositeBlock)

Model (internal)

MoC
(internal)

InterfaceBlock

Interface
Block

Glue ()

� Heterogeneity = hierarchy

�Delegation
of the update

� Adaptation
� Data

� Control

� Time

17

IN
OUT ?

1. Context, existing approaches & motivations

2. ModHel’X: underlying concepts

3. The coffee machine example

4. Discussion & conclusion

Agenda

11/04/2008 18

The coffee machine example

User Coffee
machine

19

The coffee machine example

User Coffee
machine

GlobalStructure

Coffee
Machine

GlobalModel

DE
User

coin

coffee

served

19

The coffee machine example

User Coffee
machine

GlobalStructure

Coffee
Machine

GlobalModel

DE
User

coin

coffee

served

Ready

coin?

coffee? served!

Idle

� Coffee machine
automaton

19

The coffee machine example

User Coffee
machine

GlobalStructure

Coffee
Machine

GlobalModel

DE
User

coin

coffee

served

CoffeeMachine (InterfaceBlock)

FSM

served

CoffMachStructure

G1

CoffMachModel

FSM

served
G2 A2

coin

Ready

coffee

Idle

served

coin

coffee

G1

Ready

coin?

coffee? served!

Idle

init=G1
curr=G1

G2

A2

� Coffee machine
automaton

19

The coffee machine example

User Coffee
machine

GlobalStructure

Coffee
Machine

GlobalModel

DE
User

coin

coffee

served

CoffeeMachine (InterfaceBlock)

FSM

served

CoffMachStructure

CoffMachModel

FSM

served

coin

coffee

curr=idle

coin

coffee served

coffee? served!

Idle Ready

coin?

20

The coffee machine example

User Coffee
machine

GlobalStructure

Coffee
Machine

GlobalModel

DE
User

coin

coffee

served

CoffeeMachine (InterfaceBlock)

FSM

served

CoffMachModel

FSM

served

coin

coffee

CoffMachStructure

coin

coffee served

curr=idle

coffee? served!

Idle Ready

coin?

� Semantic adaptation:
time “gluing”?

20

The coffee machine example

User Coffee
machine

GlobalStructure

Coffee
Machine

GlobalModel

DE
User

coin

coffee

served

CoffeeMachine (InterfaceBlock)

FSM

served

CoffMachModel

FSM

served

coin

coffee

CoffMachStructure

coin

coffee served

curr=idle

coffee? served!

Idle Ready

coin?

20

� Semantic adaptation:
time “gluing”?

� in: remove timestamps

� out: add timestamps

� which ones?

User Coffee
machine

GlobalStructure

Coffee
Machine

GlobalModel

DE
User

coin

coffee

served

CoffeeMachine (InterfaceBlock)

t j +DT

ServingDelay : DT

FSM

served

CoffMachModel

FSM
t i

t j

The coffee machine example

� Semantic adaptation:
time “gluing”?

CoffMachStructure

coin

coffee served

curr=idle

coffee? served!

Idle Ready

coin?

� in: remove timestamps

� out: add timestamps

� which ones?

20

The coffee machine example

21

http://wwwdi.supelec.fr/logiciels/modhelx/

Proof of concept demo

1. Context, existing approaches & motivations

2. ModHel’X: underlying concepts

3. The coffee machine example

4. Discussion & conclusion

22

Agenda

11/04/2008

Discussion

� Use for tests:
Simulation & real-time execution of heterogeneous models

� Rapid prototyping

� Execution of test scenarios

� Generation of traces for analysis, …

� Supported MoCs

� Continuous behaviors: numerical solving (approximation)

� Cyclic dependencies: fixed point semantics (monotonicity…)

� Non-determinism: “controlled” non-determinism (pseudo-random functions)

� How to add support for an additional language in ModHel’X?

1. An expert of the modeling language describes:

� The MoC corresponding to the language (structure + semantics)

� Transformations from the original meta-model of the language
to the ModHel’X meta-model

2. Experts define usual interaction patterns (“glues”) for pairs of MoCs

23

o
n
c
e
!

Conclusion

� ModHel’X = an approach to multi-formalism modeling with

� A generic meta-model for representing heterogeneous models

� A specific structure for the explicit and flexible specification
of the interactions between MoCs

� A generic algorithm for executing heterogeneous models

� A fixed frame for expressing MoCs

� Work in progress

� Prototype based on the Eclipse Modeling Framework (EMF)

� Several implemented MoCs

� Working on the Synchronous DataFlow and UML StateCharts MoCs

� Concrete syntax of our language (OMG ImperativeOCL – QVT)

� Verbosity

� Formal semantics

� Perspectives

�Model based expression of glues

� Combination of formal properties
24

References

[Kermeta] Muller, P.-A., F. Fleurey and J.-M. J´ez´equel, Weaving executability
into object-oriented meta-languages, in: Proceedings of the 8th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems
(MODELS/UML 2005), 2005, pp. 264–278.

[ATOM3] de Lara, J. and H. Vangheluwe, ATOM3: A tool for multi-formalism
modelling and meta-modelling, in: 5th Fundamental Approaches to Software
Engineering International Conference (FASE 2002), 2002, pp. 595–603.

[PtolemyII] Eker, J., J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S.
Neuendorffer, S. Sachs and Y. Xiong, Taming heterogeneity – the Ptolemy
approach, Proceedings of the IEEE, Special Issue on Modeling and Design of
Embedded Software 91 (2003), pp. 127–144.

25

